Tracial numerical ranges and linear dependence of operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracial Numerical Ranges and Linear Dependence of Operators

Linear dependence of two Hilbert space operators is expressed in terms of equality in modulus of certain sesquilinear and quadratic forms associated with the operators. The forms are based on generalized numerical ranges.

متن کامل

Ela Tracial Numerical Ranges and Linear Dependence of Operators

Linear dependence of two Hilbert space operators is expressed in terms of equality in modulus of certain sesquilinear and quadratic forms associated with the operators. The forms are based on generalized numerical ranges.

متن کامل

Numerical ranges of composition operators

Composition operators on the Hilbert Hardy space of the unit disk are considered. The shape of their numerical range is determined in the case when the symbol of the composition operator is a monomial or an inner function fixing 0. Several results on the numerical range of composition operators of arbitrary symbol are obtained. It is proved that 1 is an extreme boundary point if and only if 0 i...

متن کامل

On Generalized Numerical Ranges of Quadratic Operators

It is shown that the result of Tso-Wu on the elliptical shape of the numerical range of quadratic operators holds also for the essential numerical range. The latter is described quantitatively, and based on that sufficient conditions are established under which the c-numerical range also is an ellipse. Several examples are considered, including singular integral operators with the Cauchy kernel...

متن کامل

Linear Operators Preserving Generalized Numerical Ranges and Radii on Certain Triangular Algebras of Matrices

Let c = (c1, . . . , cn) be such that c1 ≥ · · · ≥ cn. The c-numerical range of an n×n matrix A is defined by

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Linear Algebra

سال: 2011

ISSN: 1081-3810

DOI: 10.13001/1081-3810.1425